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Objectives

Quantify how extreme
weather affects food systems

e Aim 1: Food Prices
e Aim 2: Child Wasting



Dissertation overview

Five types of m+ - ‘ 2t~ d»
extreme weather events: — f|| 2

e Changes in global retail e Baseline seasonal wasting * Probability of underpredicting
food prices (FEWS, (SMART, DHS, MICS) critical phase transitions
GIEWS, VAM) e Changes to seasonal [FEEINED, UAE, C),

e Changes to price e » Changes to underprediction

5 . P &P probabilities
seasonality
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Improve understanding of
seasonal wasting and
expectations around

seasonal extreme weather




Key findings and policy relevance

 Retall food prices are resilient to extreme weather
* Prioritize provision of Fruits and Vegetables during storm months

« Demand reduction of breads and cereals across several extreme
events can point to multidimensional intervention opportunities
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« Wasting is seasonal and spatially heterogenous
» Establish baseline seasonality from available data

* Need climatological representativeness in survey design and nutrition
surveillance
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« Mixed preliminary evidence around extreme weather
famine phase prediction accuracy

» Probabilistic findings can be incorporated in famine forecasting to
guantify uncertainty



Motivation and Background



Current knowledge and gaps

» Retalil food prices

» Focus on staples (maize, rice, wheat) and crisis periods: 2008 and 2011 (Headey & Fan, 2008; Bellemare,
2014), Covid-19 (Narayanan & Saha, 2021; Akter, 2020; Wallingford et al, 2023)

« Main pathways: production losses (Aker, 2008); physical barriers (Thapa and Shively, 2016)
» Retall price seasonality (Bai et al, 2019) and weather shocks (Brown & Kshirsagar, 2015; Cedrez et al., 2020)

 Child wasting
» Rapid response of weight and WHZ to shocks (Chotard et al., 2010; Kinyoki et al., 2017; Isanaka 2021)

» Precipitation shocks and vegetation anomalies associated with greater wasting and stunting (Cooper et al,
2019; Phalkey et al., 2015; Shively et al., 2015; Mulmi et al., 2016; Darrouzet-Nardi & Masters, 2017)

« Reexamination of hypothesis that greatest hunger occurs pre-harvest (Grellety et al, 2013; Saville, 2021)
» Two peaks of wasting in arid unimodal drylands of sub-Saharan Africa (Venkat et al, 2023)

* Food security and famine early warning

» Prediction accuracy, skill, missed transitions (Choularton & Krishnamurthy, 2019: Krishnamurthy et al, 2020;
Backer & Billing, 2021)

* Probabilistic framework evolving due to short time series



Measuring extreme weather

« Plurality of measures of events, shocks, and dimensions of extreme weather

» Relevant criteria: remotely sensed, long time series available, high spatial resolution

» Operational definitions

Heatwave: values exceeding 95t percentile of monthly maximum temperature, calculated
from Terraclimate (Abatzoglou et al, 2018)

Coldwave: values below 5™ percentile of monthly minimum temperature, calculated from
Terraclimate (Abatzoglou et al, 2018)

Flood: values exceeding 95" percentile of 1-month SPI time series, calculated from
CHIRPS (Funk et al, 2015)

Drought: values below 5™ percentile of 6-month Standardized Precipitation and
Evapotranspiration Index (Dalezios et al, 2017; Vicente-Serrano et al, 2010),
calculated from CHIRPS monthly precipitation (Funk et al, 2015) and MOD11C3 v061
monthly temperature (Wan et al, 2021)

Storm: average radius of storm-force winds or higher, from IBTrACS (Knapp et al, 2010)
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Aim 1. How are food prices
related to extreme events?



Specific Aim 1: Sub-aims

Aim 1.2: Differences across
markets and subregions

Aim 1.1: Global evidence
from early warning systems




Research design

Piimy = Bo + Bi1Extreme Eventjp, + ,FG; +
B3(FG; * Extreme Eventj,,) +
,84Fimy + Viy + Amy + ij +17; + €
* Pjmy : In(Price per kg), In(Price per 1000 kCal)

ijmy

« Derived from three global food security early warning systems (FAO GIEWS, USAID FEWSNET, WFP VAM)

» Extreme Event: five types of extreme weather events with independent definitions

* FG,; : one of eight food groups
* Non-Perishables: Breads and Cereals; Fats and Oils; Pulses, Nuts, and Seeds; Sugar and Confectionery

« Perishables: Dairy and Eggs; Fish and Seafood; Fruits and Vegetables; Meats
« Unit of analysis: food item i in market j refers in month m and year y of price observation
* Fimy : FAO commodity group price index for food group corresponding to i

* Fixed Effects: market location (y;), market-month (6;,,,), market-year (6;,), item (z;)



Dataset summary
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http://www.fao.org/giews/en/
https://fews.net/
https://data.humdata.org/dataset/global-wfp-food-prices

Retall prices and extreme weather

Perishable Non-Perishable
Heatwave b
Coldwave e
Storm =
Flood
Drought e
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Extreme Event
Change in Price -
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Data Sources: FAO GIEWS, USAID FEWS, and WFP VAM

Resilience!

7%7 of F&V prices
during Storm
months

5.2%1 in prices of
Breads and
Cereals during
seasonal droughts
7%7 in prices of
Fats and Oils
during coldwaves:
residual calendar
effects?
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Retall prices and extreme weather
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Retall prices and extreme weather
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Aim 2: How Is child wasting
related to extreme weather?



Aim 2: Sub-aims

Aim 2.1: Identify the seasonal
baseline pattern of wasting in
diverse settings (SMART, DHS, MICS)

Aim 2.2: Quantify the effects of
extreme events on wasting
seasonality



Research design

Logit(W;tpk) = Bo + B1Seasonalityjpx + BaExtreme Eventj, + €

W : Wasting, WHZ <= -2
» Databases of anthropometry in emergency (SMART) and non-emergency settings (DHS, MICS)

« Extreme Event: five types of extreme weather events with independent definitions
« Limited overlap between survey months and months with extreme weather

« Subgroups
« K: Dominant Koppen climate class of survey boundary (Beck et al, 2018)
« P: Dominant precipitation type (unimodal or bimodal) for survey extent (Knoben, 2019)

» Unit of analysis: child i in location j (cluster / administrative boundary) at time t (month and year of survey)
« Seasonality : vector of multiple harmonic terms including linear, quadratic, and cubic trends based on
continuous time series of months
*  Bs1sin(2rwt) + L1 cosrwt) + Bs, sin(Anwt) + By sin(dnwt) + LT (t)
» Used to extract seasonal characteristics (peak timing, peak value)
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Distribution of significant harmonics




Distribution of significant harmonics

Single Harmonic

Double Harmonic

Mix of significant single and

double harmonics indicates

heterogeneity

Datasets can be utilized to

validate or refute calculated

harmonic patterns

« E.g. Northern Nigeria and
Ethiopian highlands

Baseline map for other

regions to contribute own

analyses to fill in the gap

21



Distribution of peak timings




Distribution of peak timings

* Heterogeneity in peak timing

» Estimated peak values can help
prioritize particular regions for
nutrition surveillance

« Magnitudes of wasting may be
different, not necessarily
actionable

23



Aim 3. How are famine phase
predictions associated with
extreme weather?



Specific Aim 3: Sub-aims

Aim 3.1: Describe the quality of predictions
generated by famine early warning systems

Aim 3.2: Quantify the effect of extreme
events on accuracy of predictions generated
by famine early warning systems



Research design

P(ST; gq+41 L CSjaq) = Po + B1Extreme Event;; +vy; + €

* ST, : Short-term phase prediction
« FEWS: four observations per year before 2016, three after 2016 (Feb, Jun, Oct)
* CH: three observations per year (Jan, Jun, Sept), West Africa only
* IPC: limited cyclical observations

CS, : Current phase classification

Extreme Event: five types of extreme weather events with independent definitions

Fixed Effects: country (y;)

Unit of analysis: pixel | in dataset d observed at time t (month and year comprising
guarter q)



Probability summary
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Transition probability
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Key findings and policy relevance

 Retall food prices are resilient to extreme weather
* Prioritize provision of Fruits and Vegetables during storm months

« Demand reduction of breads and cereals across several extreme
events can point to multidimensional intervention opportunities

-+

« Wasting is seasonal and spatially heterogenous
» Establish baseline seasonality from available data

* Need climatological representativeness in survey design and nutrition
surveillance
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« Mixed preliminary evidence around extreme weather
famine phase prediction accuracy

» Probabilistic findings can be incorporated in famine forecasting to
guantify uncertainty



Limitations

Data availability and resolution
« Errors in spatial matching and temporal alignment — difficult to validate retroactively
« Spatiotemporal aggregation may obscure extremes (Alarcon et al, 2020)
* Internal variability among datasets measuring similar phenomena (de Perez et al, 2023)
» Non-public data in source databases may add further context or modify conclusions

Endogeneity and exposure misclassification

« Key assumptions: climate not affected by human activities, equal experience of climate
and extreme weather in sample

« Cascading effects, sequences, interactions among extremes (e.g. flood and storm)

Causal inference and predictive modeling not feasible at chosen scale

Alternate pathways beyond climate: conflict, mobility, demographics



Future directions

« Aim 1: Food prices
» Validation at localized scales with higher resolution datasets
« Markups in supply chain with producer, wholesale, and retail prices
» Road distance, nighttime lights, protective effects

« Aim 2: Wasting
 Validation at localized scales with nutrition surveillance datasets
« Comparison of wasting vs. stunting (Cliffer et al, 2024 on growth faltering)
» Validate climate sensitivity of GAM as binary indicator vs. z-scores, raw anthropometry

« Aim 3: Famine Early Warning Systems
» Probabilistic inputs into scenario development, real-time uncertainty estimates

* Advanced methods: Markovian models and Markov Chain Monte-Carlo methods,
dynamic neural networks, anticipatory action pipelines



Key Messages

e Data matters

» Available data is sparse, coarser resolutions than ideal

» Creative data fusion can help generate new hypothesis and
reexamine established ones

« Scalable methods more valuable than global insights

-+

e Mechanism matters

* Food systems do not respond in same direction and/or magnitude
across extreme events

* |nterventions should be sensitive to mechanism and scale

ip= =
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e Uncertainty matters

* Need to evaluate data completeness and quality in spatial,
temporal, and climatological domains
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Multiple Harmonic Regression

0 = By+ B;isin(2nwt) + L, cos(2nwt) + L3 sin(4nwt) + B4 sin(dnwt) + BT (t)

Characteristic

Unimodal (2r)

Bimodal (4r)

Gaussian Linear Mode!

Log-Linear Model

Gaussian Linear or Log-Linear

Regression Model

¥ = Bp+ fisin(2mwr) + ficos(2mwt) + B3T(T)

In(E[¥]) = fo+ fusin(2rwt) + f;cos(2nws) + FaT(1)

Yrorin (E[¥:]) = fo+ Bisin(2mwt) + fz cos(2mwr) +
B3 sin(2mat) + By cos(2mwt) + BsT(1)

Amplitude (y) B A A=P; — N,
r=_[B"+ B° y=eif T ¢
95% Confidence v _ B0+ B 02 + 20 5 B, - v . (,ﬁ’fcrl: + 6. 0+ ZJBJBZﬁLﬁg) Estimated arithmetically from 999 simulations
Interval of arty) = B+ B ar) =¥ B+ B.° which randomly drop up to 50% of dataset
Amplitude . 099
(€16)) Cly) = v 196 Var(y) Cly) = v +196Var(r) CI) = 320 P — Ne
Peak (P) P=f+y P = gfot+ ¥ Estimated arithmetically from first, second, and
third differences of the predicted seasonal curve.
P, = local maximum where C'=0and C" <0
P; = global maximum, largest value of all Ps
Nadir (P) N=B,—v N = egfo— ¥ Estimated arithmetically from first, second, and
third differences of the predicted seasonal curve.
N = local minimum where C'=0and C” >0
Nz = global minimum, smallest value of all N5
Peak Timing (Pr) Phase shift ® = arctan (&) Estimated arithmetically from first, second, and
fz third differences of the predicted seasonal curve.
M
iff, > O0and 5, >0, Py = (0) Py, = Timing of P, Pp ¢ = Timing of Py
IfB, <0,Pr = (a+n);—":r
IfB, < Oand B, > 0,P; = (@ + 211)%
95% Confidence Estimated arithmetically from 999 simulations

Interval of Peak
Timing (CI(8))

Var(@) =

B,%a,% + Bl 0,? — 204 5 1B

B+ By
CI(®) = 0 +1.96Var(®)

which randomly drop up to 50% of dataset

CI(PHT) = Xnii” Prg

If neither harmonic
terms are statistically
significant, conclude

no detectable
seasonality

Complete code
available on
Github!
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https://github.com/aish-venkat/seasonality/blob/main/SeasonalityCalculation.R

ext matching

SURVEY DATA

Step 1: Create location vocabulary

REFERENCE DATA

Step 1: Compile database of reference locations

Dataset | Feature ID ADMO ADM1 ADM2 ADM3
province, territory, district, village, DHS |DHS2017_4| Pakistan Punjab - -
GAUL 2276 Pakistan Punjab - -
Step 2: Extract survey fields matching vocabulary GADM | PAK7_1 | Pakistan | Punjab : -
GADM | PAK.7.2_1 | Pakistan Punjab | Dera Ghazi Khan -
— i GADM |PAK.7.2.3_1| Pakistan Punjab | Dera Ghazi Khan | Muzaffargarh
Respondent!D | District Village Survey Date GADM |PAK.7.2.4_1| Pakistan | Punjab | Dera Ghazi Khan | Rajan Pur
1 D.G.Khan Muzaffargarh 20 January 2020
Step 2: Concatenate locations into one reference
Step 3: Make corrections based on known survey string per feature
location and concatenate into one target string '
Feature ID | REF_STRING
) . DHS2017_4 | 2276 | PAK.7_1 Pakistan - Punjab
Pakistan - Dera Ghazi Khan - Muzaffargarh PAK.7.2_1 Pakistan - Punjab - Dera Ghazi Khan
PAK.7.2.3_1| Pakistan - Punjab - Dera Ghazi Khan - Muzaffargarh
PAK.7.2.4_1 Pakistan - Punjab - Dera Ghazi Khan - Rajan Pur
Feature ID | REF_STRING SCORE
Step 4: Run Fuzzy Paklste_m - DHS2017_4| 2276 | PAK.}?J ‘ Pakistan - P}.lnjﬂb 60
String Matching Dera Ghazi Khan - PAK.7.2_1 Pakistan - Punjab - Dera Ghazi Khan 80
Muzaffargarh PAK.7.2.3 1| Pakistan - Punjab - Dera Ghazi Khan - Muzaffargarh 97
PAK.7.2.4_1 Pakistan - Punjab - Dera Ghazi Khan - Rajan Pur 82
Step 5: Extract best match and Pakistan - is matched to
. : Dera Ghazi Khan - _ PAK.7.2.3_1
retain the spatial feature ID -
Muzaffargarh

37



Indicator

Nutritional outcomes in prior work
related to extreme weather

Anthropometry Birth Outcomes Consumption
HAZ [ . : Food Consumption By Food Group
Wasting | Birth Weight I FCs
Underweight |l I
Stunting | Low Birth Weight Energy Intake
WHZ Protein Intake
) WAZ Small At Birth Protein Energy Malnutrition
Stunting And Wasting .
MUAC PER Non-Food Consumption
Height Food Consumption
Diet Diversity Micronutrient Status Other
Vitamin C Intake HFIAS
HDDS Vitamin A Supplementation csl
Vitamin A Intake
Diet Di " Vitamin A Deficiency Stated Food Insecurity Status
iet Diversity Nutrient Deficiencies Mortality
Iron Intake
Anemia CCHIP
0 5 10 15 20 0O 5 10 15 20 0 5 10 15 20

Number of Publications

Cold . Drought . Flood Heat . Landslide . Storm . Temperature

N = 238 studies containing extreme weather keywords reviewed in Chapter 2
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IPC Reference Table

IPC Acute Food Insecurity (First Level Outcomes) Reference Table

Reduced Coping Strategies Index  rCSl: 4-18
(rCSI)# 0-3

No livelihood protection deficit. protection defict <80%

Food Insecurity Experience Scale (FIES FIES: Between -0.58 and 0.36
30 days recall): < 0,58

change: Sustainable
livelibood strategies and assets

00d change: Stressed
strategies and/or assets; reduced

U;ﬂl'::d Livelihood coping strategies (LCSs)*  ability to invest in Bvelihoods
(assetsand 0 ved. severe stratoges used by the
strateges) household in the past 30 days.

Household Economy Analysis (HEA): HEA: Small or mederate livelihood  HEA: Livelihbood protection deficitHEA: Survival Deficit 220% but  HEA: Survival deficit 250%

No stress, crisis or emergency coping  LCS: Stress strategies are the most  LCSs: Crisis strategies are the  LCSs: Emergency strategies are  capacity.

Phase 5
hase name and Phase 1 Phase 2 Phase 4 Catastronhal
escription None/Minimal Stressed Emergency 2
Famine
Food First-level outcomes refer to characteristics of food consumption and Fvelihood change. Thresholds that correspond as closely as possible to the Phase description are induded for
mnrny each indicator. Aithough cut-offs are based on applied research and presented as a global reference, correlation between indicators is often somewhat limited and findings need to be
contextualized. The area &s classified in the most severe Phase that affects at least 20% of the population.
first-level Quantity: Adequate energy Intake  Quantity: Minimally adequate Quantity: Moderately Quantity: Very Inadequate ~  Quantity: Extremely Inadequate ~
level inadequate — Moderate deficits Large deficits Very large deficits
outco Dictary energy Intake:' Adequate Dictary energy Intake: Minimally  Dietary energy Intake: Food gap Dietary energy Intake: Large  Dietary Energy Intake: Extreme
mes (avg. 2,350 Kilocalories (keal) pp/day) adeguate (avg. 2,100 keal pp/day)  (below avg. 2,100 keal pp/day)  food gap (well below 2,100 kcal food gap

(household and stable po/day)
level) )

Household Dietary Diversity Score  HDDS: 5 FG but deterioration 21 FG HDDS: 3-4 FG HDDS: 0-2 FG (NDC to HDDS 0-2 FG (NDC)

(HDDS):* 5-12 food groups and stable from typical differentiate P4 and 5)

food Food Consumption Score (FCS)= FCS: Acceptable but deterioration  FCS: Borderfine FCS: Poor (NDC to défferentiate  FCS: Poor (NDC to differentiate P4
consumption Acceptable and stable from typical P4 and 5) and 5)
fac
‘ “,:.,",'L:,""“ Household Hunger Scale (HHS)* 0 HHS: 1 (slight) HHS: 2-3 (moderate) HMS: 4 (severe) HHS: 5-6 (severe)
(none)

rcSl: > 1% (non-definingrCSI: > 19 (NDC to differentiate rCSI: > 19 (NDC to differentiate P3,
characteristics—NDC—to P3,4and 5) dand5)
diferentiate P3, 4 and 5)

280%; or survival deficit <20%  <S0%

FIES: > 0.36 (NDC to differentiateFIES: > 0.36 (NDC 1o
between Phases 3, £ and §5) differentiate between Phases 3,

FIES: > 0,36 (NDC)

change: Accelerated Livelihood change: Extreme Livelihood change: Near complet
depletion/erosion of strategies  depletion/ liquidation of collapse of strategies and assets
and/or assets strategies and assets LCSs: Near exhaustion of copi

most severe strategies used by  the most severe strategles used
the household in the past 30 by the household in the past 30
days. days.

Source: IPC Global Partners (2021) p. 37,
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