Drought in Brazil, 2023

Flooding in Libya, 2023

Hurricane Ian in USA, 2022

(top row) Edmar Barros / AP Jamal Alkomaty / AP Photo Ricardo Arduengo / AFP/Getty Images

(bottom row) Nicolas Economou / Reuters Abdul Majeed / AFP/Getty Thoko Chikondi / Associated Press

Heatwave-driven wildfires in Greece, 2023

Flooding in Pakistan, 2022

Climate and Health: Extreme Weather, Food Systems, and Nutrition

Aishwarya Venkat

Doctoral Candidate, Agriculture, Food, and Environment Friedman School of Nutrition Science and Policy, Tufts University Dissertation Defense April 24, 2024

Thesis Committee

Elena N. Naumova, PhD
Professor, Nutrition
Epidemiology & Data Science

Erin Coughlan de Perez, PhD
Professor, Agriculture,
Food, & Environment

William A. Masters, PhD
Professor, Food and Nutrition
Policy and Programs

Objectives

Quantify how extreme weather affects food systems

- Aim 1: Food Prices
- Aim 2: Child Wasting
- Aim 3: Famine Phase Prediction

Dissertation overview

Five types of extreme weather events:

Aim 1: Food Prices

- Changes in global retail food prices (FEWS, GIEWS, VAM)
- Changes to price seasonality

Inform policies to make nutritious foods affordable and improve supply chain resilience to climate change

Aim 2: Child Wasting

- Baseline seasonal wasting (SMART, DHS, MICS)
- Changes to seasonal wasting pattern

Improve understanding of seasonal wasting and expectations around seasonal extreme weather

Aim 3: Famine Phase Prediction

- Probability of underpredicting critical phase transitions (FEWSNET, IPC, CH)
- Changes to underprediction probabilities

Improved prediction accuracy and decision-making during / following extreme events

Key findings and policy relevance

- Retail food prices are resilient to extreme weather
 - Prioritize provision of Fruits and Vegetables during storm months
 - Demand reduction of breads and cereals across several extreme events can point to multidimensional intervention opportunities
- Wasting is seasonal and spatially heterogenous
 - Establish baseline seasonality from available data
 - Need climatological representativeness in survey design and nutrition surveillance
- Mixed preliminary evidence around extreme weather famine phase prediction accuracy
 - Probabilistic findings can be incorporated in famine forecasting to quantify uncertainty

Motivation and Background

Current knowledge and gaps

Retail food prices

- Focus on staples (maize, rice, wheat) and crisis periods: 2008 and 2011 (Headey & Fan, 2008; Bellemare, 2014), Covid-19 (Narayanan & Saha, 2021; Akter, 2020; Wallingford et al, 2023)
- Main pathways: production losses (Aker, 2008); physical barriers (Thapa and Shively, 2016)
- Retail price seasonality (Bai et al, 2019) and weather shocks (Brown & Kshirsagar, 2015; Cedrez et al., 2020)

Child wasting

- Rapid response of weight and WHZ to shocks (Chotard et al., 2010; Kinyoki et al., 2017; Isanaka 2021)
- Precipitation shocks and vegetation anomalies associated with greater wasting and stunting (Cooper et al., 2019; Phalkey et al., 2015; Shively et al., 2015; Mulmi et al., 2016; Darrouzet-Nardi & Masters, 2017)
- Reexamination of hypothesis that greatest hunger occurs pre-harvest (Grellety et al, 2013; Saville, 2021)
- Two peaks of wasting in arid unimodal drylands of sub-Saharan Africa (Venkat et al, 2023)

Food security and famine early warning

- Prediction accuracy, skill, missed transitions (Choularton & Krishnamurthy, 2019: Krishnamurthy et al, 2020;
 Backer & Billing, 2021)
- Probabilistic framework evolving due to short time series

Measuring extreme weather

- Plurality of measures of events, shocks, and dimensions of extreme weather
- Relevant criteria: remotely sensed, long time series available, high spatial resolution
- Operational definitions
 - **Heatwave**: values exceeding 95th percentile of monthly maximum temperature, calculated from Terraclimate (Abatzoglou et al, 2018)
 - **Coldwave:** values below 5th percentile of monthly minimum temperature, calculated from Terraclimate (Abatzoglou et al, 2018)
 - **Flood**: values exceeding 95th percentile of 1-month SPI time series, calculated from CHIRPS (Funk et al, 2015)
 - Drought: values below 5th percentile of 6-month Standardized Precipitation and Evapotranspiration Index (Dalezios et al, 2017; Vicente-Serrano et al, 2010), calculated from CHIRPS monthly precipitation (Funk et al, 2015) and MOD11C3 v061 monthly temperature (Wan et al, 2021)
 - **Storm**: average radius of storm-force winds or higher, from IBTrACS (Knapp et al, 2010)

Aim 1: How are **food prices** related to extreme events?

Specific Aim 1: Sub-aims

Aim 1.1: Global evidence from early warning systems

Aim 1.2: Differences across markets and subregions

Research design

$$P_{ijmy} = \beta_0 + \beta_1 Extreme \ Event_{jmy} + \beta_2 FG_i + \beta_3 (FG_i * Extreme \ Event_{jmy}) + \beta_4 F_{imy} + \gamma_{jy} + \lambda_{my} + \theta_{jy} + \tau_i + \varepsilon$$

- P_{ijmy}: In(Price per kg), In(Price per 1000 kCal)
 - Derived from three global food security early warning systems (FAO GIEWS, USAID FEWSNET, WFP VAM)
- Extreme Event: five types of extreme weather events with independent definitions
- *FG*_i: one of eight food groups
 - Non-Perishables: Breads and Cereals; Fats and Oils; Pulses, Nuts, and Seeds; Sugar and Confectionery
 - Perishables: Dairy and Eggs; Fish and Seafood; Fruits and Vegetables; Meats
- Unit of analysis: food item *i* in market *j* refers in month *m* and year *y* of price observation
- Factorized Figure 1.
 Factorized Figure 2.
 Factorized Factori
- Fixed Effects: market location (γ_j) , market-month (δ_{jm}) , market-year (θ_{jy}) , item (τ_i)

Dataset summary

Total n = 1,346,513in 2,321 markets in 71 countries

Retail prices and extreme weather

- Resilience!
- 7%[†] of F&V prices during Storm months
- 5.2%↑ in prices of Breads and Cereals during seasonal droughts
- 7%[↑] in prices of Fats and Oils during coldwaves: residual calendar effects?

Retail prices and extreme weather

- Resilience
- Breads and Cereals
 - 1.9% ↓ during Heatwave months in Rural markets
 - 6.2% ↑ during seasonal drought months in Urban markets
- Fruits and Vegetables
 - 14.2%[†] during Storm in Urban markets

Retail prices and extreme weather

South Asia

- Storm response concentrated in rural markets
- Supply constriction of F&V, demand reduction of Fats and Oils during storms

Sub-Saharan Africa

- Demand reduction of Breads and Cereals is dominant response
- Joint supply constriction of Breads and Cereals and Pulses, Nuts, and Seeds during seasonal droughts

Aim 2: How is **child wasting** related to extreme weather?

Aim 2: Sub-aims

Aim 2.1: Identify the seasonal baseline pattern of wasting in diverse settings (SMART, DHS, MICS)

Aim 2.2: Quantify the effects of extreme events on wasting seasonality

Research design

$$Logit(W_{ijtPK}) = \beta_0 + \beta_1 Seasonality_{jtPK} + \beta_2 Extreme Event_{jt} + \varepsilon$$

- *W*: Wasting, WHZ <= -2
 - Databases of anthropometry in emergency (SMART) and non-emergency settings (DHS, MICS)
- Extreme Event: five types of extreme weather events with independent definitions
 - Limited overlap between survey months and months with extreme weather
- Subgroups
 - K: Dominant Koppen climate class of survey boundary (Beck et al, 2018)
 - P: Dominant precipitation type (unimodal or bimodal) for survey extent (Knoben, 2019)
- Unit of analysis: child *i* in location *j* (cluster / administrative boundary) at time *t* (month and year of survey)
- Seasonality: vector of multiple harmonic terms including linear, quadratic, and cubic trends based on continuous time series of months
 - $\beta_{S1} \sin(2\pi\omega t) + \beta_{C1} \cos(2\pi\omega t) + \beta_{S2} \sin(4\pi\omega t) + \beta_{C2} \sin(4\pi\omega t) + \beta_5 T(t)$
 - Used to extract seasonal characteristics (peak timing, peak value)

Dataset summary

Total n = 2,591,633 children in 49 countries

Level 1 Köppen climate class

Level 2 Köppen climate class:
seasonal precipitation subgroup

Precipitation mode

Survey boundaries identified via text matching, adjusted to remove extremely rural areas

Distribution of significant harmonics

Distribution of significant harmonics

- Mix of significant single and double harmonics indicates heterogeneity
- Datasets can be utilized to validate or refute calculated harmonic patterns
 - E.g. Northern Nigeria and Ethiopian highlands
- Baseline map for other regions to contribute own analyses to fill in the gap

Distribution of peak timings

Distribution of peak timings

- Heterogeneity in peak timing
- Estimated peak values can help prioritize particular regions for nutrition surveillance
- Magnitudes of wasting may be different, not necessarily actionable

Aim 3: How are **famine phase predictions** associated with extreme weather?

Specific Aim 3: Sub-aims

Aim 3.1: Describe the quality of predictions generated by famine early warning systems

Aim 3.2: Quantify the effect of extreme events on accuracy of predictions generated by famine early warning systems

Research design

$$P(ST_{j,d,q+1} \perp CS_{j,d,q}) = \beta_0 + \beta_1 Extreme Event_{j,t} + \gamma_j + \varepsilon$$

- ST_{q+1} : Short-term phase prediction
 - FEWS: four observations per year before 2016, three after 2016 (Feb, Jun, Oct)
 - CH: three observations per year (Jan, Jun, Sept), West Africa only
 - IPC: limited cyclical observations
- CS_a: Current phase classification
- Extreme Event: five types of extreme weather events with independent definitions
- Fixed Effects: country (γ_i)
- Unit of analysis: pixel j in dataset d observed at time t (month and year comprising quarter q)

Probability summary

Preliminary result: floods associated with 2.5-12x (CH), 2.6 – 19.1 (IPC) greater odds of Phase 4 underprediction

Transition probability

Key findings and policy relevance

- Retail food prices are resilient to extreme weather
 - Prioritize provision of Fruits and Vegetables during storm months
 - Demand reduction of breads and cereals across several extreme events can point to multidimensional intervention opportunities
- Wasting is seasonal and spatially heterogenous
 - Establish baseline seasonality from available data
 - Need climatological representativeness in survey design and nutrition surveillance
- Mixed preliminary evidence around extreme weather famine phase prediction accuracy
 - Probabilistic findings can be incorporated in famine forecasting to quantify uncertainty

Limitations

- Data availability and resolution
 - Errors in spatial matching and temporal alignment difficult to validate retroactively
 - Spatiotemporal aggregation may obscure extremes (Alarcon et al, 2020)
 - Internal variability among datasets measuring similar phenomena (de Perez et al, 2023)
 - Non-public data in source databases may add further context or modify conclusions
- Endogeneity and exposure misclassification
 - Key assumptions: climate not affected by human activities, equal experience of climate and extreme weather in sample
 - Cascading effects, sequences, interactions among extremes (e.g. flood and storm)
- Causal inference and predictive modeling not feasible at chosen scale
- Alternate pathways beyond climate: conflict, mobility, demographics

Future directions

Aim 1: Food prices

- Validation at localized scales with higher resolution datasets
- Markups in supply chain with producer, wholesale, and retail prices
- Road distance, nighttime lights, protective effects

Aim 2: Wasting

- Validation at localized scales with nutrition surveillance datasets
- Comparison of wasting vs. stunting (Cliffer et al, 2024 on growth faltering)
- Validate climate sensitivity of GAM as binary indicator vs. z-scores, raw anthropometry

Aim 3: Famine Early Warning Systems

- Probabilistic inputs into scenario development, real-time uncertainty estimates
- Advanced methods: Markovian models and Markov Chain Monte-Carlo methods, dynamic neural networks, anticipatory action pipelines

Key Messages

Data matters

- Available data is sparse, coarser resolutions than ideal
- Creative data fusion can help generate new hypothesis and reexamine established ones
- Scalable methods more valuable than global insights

Mechanism matters

- Food systems do not respond in same direction and/or magnitude across extreme events
- Interventions should be sensitive to mechanism and scale

Uncertainty matters

 Need to evaluate data completeness and quality in spatial, temporal, and climatological domains

Thank you!

- Dissertation committee
- Family and friends
- Funding support
 - Food Prices for Nutrition project at Tufts University funded by the Bill & Melinda Gates Foundation and the UK FCDO (INV-016158)
 - USAID Feed the Future Innovation Lab for Sustainable Intensification (Cooperative Agreement No. AID-OAA-L-14-00006)
 - Contracts with World Bank and Micronutrient Forum

- Mentors & collaborators
 - Ilana Cliffer
 - Anastasia Marshak
 - Helen Young
 - Daniel Maxwell
 - Paul Howe
 - Felipe Dizon
 - Kalyani Raghunathan
 - Derek Headey
- Feinstein International Center
- TTS and Data Lab

- InForMID team
 - Ryan Simpson
 - Tanya Alarcon Falconi
 - Bingjie Zhou
 - Emily Sanchez
 - Bree Langlois
- Food Prices for Nutrition team
 - Yan Bai
 - Anna Herforth
 - Rachel Gilbert
 - Kristina Sokourenko

Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy

InForMID

Initiative for the Forecasting and Modeling of Infectious Diseases

Questions?

Annex

Multiple Harmonic Regression

$$O = \beta_0 + \beta_1 \sin(2\pi\omega t) + \beta_2 \cos(2\pi\omega t) + \beta_3 \sin(4\pi\omega t) + \beta_4 \sin(4\pi\omega t) + \beta_5 T(t)$$

Characteristic	Unimo	Bimodal (4π)	
	Gaussian Linear Model $Y_t = \beta_0 + \beta_1 \sin(2\pi\omega t) + \beta_2 \cos(2\pi\omega t) + \beta_3 T(t)$	Log-Linear Model $\ln (E[Y_t]) = \beta_0 + \beta_1 \sin(2\pi\omega t) + \beta_2 \cos(2\pi\omega t) + \beta_3 T(t)$	Gaussian Linear or Log-Linear Y_t or $\ln (E[Y_t]) = \beta_0 + \beta_1 \sin(2\pi\omega t) + \beta_2 \cos(2\pi\omega t) +$
Regression Model	$r_t = \rho_0 + \rho_1 \sin(2\pi\omega t) + \rho_2 \cos(2\pi\omega t) + \rho_3 I(t)$	$\ln \left(E[r_t] \right) = \rho_0 + \rho_1 \sin(2\pi\omega t) + \rho_2 \cos(2\pi\omega t) + \rho_3 I(t)$	$ \begin{array}{c} \mathbf{r}_t \text{ or in } (E[\mathbf{r}_{t1}]) = \beta_0 + \beta_1 \sin(2\pi\omega t) + \beta_2 \cos(2\pi\omega t) + \\ \beta_2 \sin(2\pi\omega t) + \beta_4 \cos(2\pi\omega t) + \beta_5 T(t) \end{array} $
Amplitude (γ)	$\gamma = \sqrt{{\beta_1}^2 + {\beta_2}^2}$	$\gamma = e^{\sqrt{\beta_1^2 + \beta_2^2}}$	$A = P_G - N_G$
95% Confidence	$Var(\gamma) = \frac{\beta_1^2 \sigma_1^2 + \beta_2^2 \sigma_2^2 + 2\sigma_{\beta_1\beta_2}\beta_1\beta_2}{\beta_1^2 + \beta_2^2}$	$Var(\gamma) = \gamma^2 \left(\frac{\beta_1^2 \sigma_1^2 + \beta_2^2 \sigma_2^2 + 2\sigma_{\beta_1\beta_2}\beta_1\beta_2}{\beta_1^2 + \beta_2^2} \right)$	Estimated arithmetically from 999 simulations
Interval of	$\beta_1^2 + \beta_2^2$	$\beta_1^2 + \beta_2^2$	which randomly drop up to 50% of dataset
Amplitude $(CI(\gamma))$	$CI(\gamma) = \gamma \pm 1.96 \sqrt{Var(\gamma)}$	$CI(\gamma) = \gamma \pm 1.96 \sqrt{Var(\gamma)}$	$CI(\hat{\gamma}) = \sum_{n=1}^{n=999} P_G - N_G$
Peak (P)	$P = \beta_0 + \gamma$	$P = e^{\beta_0} + \gamma$	Estimated arithmetically from first, second, and
			third differences of the predicted seasonal curve.
			$P_L = \text{local maximum where C'} = 0 \text{ and C''} < 0$
			$P_G=$ global maximum, largest value of all P_L s
Nadir (P)	$N = \beta_0 - \gamma$	$N = e^{\beta_0} - \gamma$	Estimated arithmetically from first, second, and
			third differences of the predicted seasonal curve.
			$N_L = \text{local minimum where C'} = 0 \text{ and C''} > 0$
			$N_{G}=$ global minimum, smallest value of all N_{L} s
Peak Timing (P_T)	Phase shift $\Theta = \arctan\left(\frac{\beta_1}{a}\right)$		Estimated arithmetically from first, second, and
		(β2)	third differences of the predicted seasonal curve.
	If $eta_1>0$ and eta_2	$P_{T,L}$ = Timing of P_L , $P_{T,G}$ = Timing of P_G	
	If $\beta_2 < 0$, P_T		
	If $eta_1 < 0$ and $eta_2 >$		
95% Confidence Interval of Peak $Var(\Theta) = \frac{\beta_1^2 \sigma_2^2 + \beta_2^2 \sigma_1^2 - 2\sigma_{\beta_1\beta_2}\beta_1\beta_2}{(\beta_1^2 + \beta_2^2)^2}$		$-\beta_2^2 \sigma_1^2 - 2\sigma_{\beta_1\beta_2}\beta_1\beta_2$	Estimated arithmetically from 999 simulations
Interval of Peak	var(0) =	which randomly drop up to 50% of dataset	
Timing $(CI(\Theta))$	$CI(\Theta) = \Theta \pm$	$CI(\widehat{P_T}) = \sum_{n=1}^{n=999} P_{T,G}$	

If neither harmonic terms are statistically significant, conclude no detectable seasonality

Complete code available on Github!

Text matching

Step 1: Create location vocabulary

province, territory, district, village,

Step 2: Extract survey fields matching vocabulary

Respondent ID	District	Village	Survey Date
1	D.G.Khan	Muzaffargarh	20 January 2020

Step 3: Make corrections based on known survey location and concatenate into one target string

Pakistan - Dera Ghazi Khan - Muzaffargarh

REFERENCE DATA

Step 1: Compile database of reference locations

Dataset	Feature ID	ADM0	ADM1	ADM2	ADM3
DHS	DHS2017_4	Pakistan	Punjab	-	-
GAUL	2276	Pakistan	Punjab	-	-
GADM	PAK.7_1	Pakistan	Punjab		-
GADM	PAK.7.2_1	Pakistan	Punjab	Dera Ghazi Khan	-
GADM	PAK.7.2.3_1	Pakistan	Punjab	Dera Ghazi Khan	Muzaffargarh
GADM	PAK.7.2.4_1	Pakistan	Punjab	Dera Ghazi Khan	Rajan Pur

Step 2: Concatenate locations into one reference string per feature

Feature ID	REF_STRING		
DHS2017_4 2276 PAK.7_1		Pakistan - Punjab	
PAK.7.2_1	Pakistan - Punjab - Dera Ghazi Khan		
PAK.7.2.3_1	Pakistan - Punjab - Dera Ghazi Khan - Muzaffargarh		
PAK.7.2.4_1	Pakistan - Punj	ab - Dera Ghazi Khan - Rajan Pur	

Step 4: Run Fuzzy String Matching Pakistan -Dera Ghazi Khan -Muzaffargarh

Feature ID	REF_STRING		SCORE
DHS2017_4	2276 PAK.7_1	Pakistan - Punjab	60
PAK.7.2_1	Pakistan	80	
PAK.7.2.3_1	Pakistan - Punjal	97	
PAK.7.2.4_1	Pakistan - Punj	82	

Step 5: Extract best match and retain the spatial feature ID

Pakistan -Dera Ghazi Khan -Muzaffargarh

is matched to

PAK.7.2.3_1

Nutritional outcomes in prior work related to extreme weather

N = 238 studies containing extreme weather keywords reviewed in Chapter 2

IPC Reference Table

Phase name description	and	Phase 1 None/Minimal	Phase 2 Stressed	Phase 3 Crisis	Phase 4 Emergency	Phase 5 Catastrophe/ Famine	
Food security	First-level outcomes refer to characteristics of food consumption and livelihood change. Thresholds that correspond as closely as possible to the Phase description are included for each indicator. Although cut-offs are based on applied research and presented as a global reference, correlation between indicators is often somewhat limited and findings need to be contextualized. The area is classified in the most severe Phase that affects at least 20% of the population.						
first-level level outcomes (household		Dietary energy intake: Adequate	Quantity: Minimally adequate Dietary energy intake: Minimally adequate (avg. 2,100 kcal pp/day)	Quantity: Moderately inadequate – Moderate deficits Dietary energy intake: Food gap (below avg. 2,100 kcal pp/day)	Dietary energy intake: Large	Quantity: Extremely inadequate Very large deficits Dietary Energy Intake: Extreme food gap	
level)		Household Dietary Diversity Score (HDDS): 5–12 food groups and stable	HDDS: 5 FG but deterioration ≥1 FG from typical	HDD5: 3-4 FG	HDDS: 0-2 FG (NDC to differentiate P4 and 5)	HDDS 0-2 FG (NDC)	
	Food consumption	Food Consumption Score (FCS):	FCS: Acceptable but deterioration from typical	FCS: Borderline	FCS: Poor (NDC to differentiate P4 and 5)	FCS: Poor (NDC to differentiate P and 5)	
	(focus on energy intake)	Household Hunger Scale (HHS): 0 (none)	HHS: 1 (slight)	HHS: 2-3 (moderate)	HHS: 4 (severe)	HHS: 5-6 (severe)	
		Reduced Coping Strategies Index (rCSI): 0-3	rCSI: 4-18	rCSI: ≥ 19 (non-defining characteristics—NDC—to differentiate P3, 4 and 5)	grCSI: ≥ 19 (NDC to differentiate P3, 4 and 5)	rCSI: ≥ 19 (NDC to differentiate P 4 and 5)	
		Household Economy Analysis (HEA): No livelihood protection deficit.	HEA: Small or moderate livelihood protection deficit <80%	HEA: Livelihood protection defici	tHEA: Survival Deficit ≥20% but <50%	HEA: Survival deficit ≥50%	
		Food Insecurity Experience Scale (FIES 30 days recall): < -0.58	FIES: Between -0.58 and 0.36	FIES: > 0.36 (NDC to differentiate between Phases 3, 4 and 5)	differentiate between Phases 3,	FIES: > 0.36 (NDC)	
		Livelihood change: Sustainable	Livelihood change: Stressed	그리는 이 경우 아이들은 아이지 않는데 이 기를 통하는데 하는데 없는데 하지만 되었다.	4 and 5) Livelihood change: Extreme	Livelihood change: Near comple	
	change (assets and strategies)	livelihood strategies and assets Livelihood coping strategies (LCSs):* No stress, crisis or emergency coping observed.	strategies and/or assets; reduced ability to invest in livelihoods LCS: Stress strategies are the most severe strategies used by the household in the past 30 days.	depletion/erosion of strategies and/or assets LCSs: Crisis strategies are the most severe strategies used by the household in the past 30 days.	depletion/ liquidation of strategies and assets LCSs: Emergency strategies are the most severe strategies used by the household in the past 30 days.	collapse of strategies and assets LCSs: Near exhaustion of copic capacity.	